- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0001000002000000
- More
- Availability
-
21
- Author / Contributor
- Filter by Author / Creator
-
-
Ashe, Sudipta (1)
-
Barua, R. (1)
-
Cao, Yutao (1)
-
Chavez, Jessica (1)
-
Chen, Mei-Lan (1)
-
Deng, Bobin (1)
-
Fu, Hao (1)
-
Gimaev, Radel R. (1)
-
Guo, Gang (1)
-
Hadimani, R. L. (1)
-
Hebrok, Matthias (1)
-
Li, Mei-Lan (1)
-
Liu, Jennifer S. (1)
-
Lo, Dan Chia-Tien (1)
-
Mei, Lan (1)
-
Nair, Gopika G. (1)
-
Parent, Audrey V. (1)
-
Shahriar, Hossain (1)
-
Shang, Yafen (1)
-
Shi, Yong (1)
-
- Filter by Editor
-
-
null (1)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Machine learning has been successfully applied to big data analytics across various disciplines. However, as data is collected from diverse sectors, much of it is private and confidential. At the same time, one of the major challenges in machine learning is the slow training speed of large models, which often requires high-performance servers or cloud services. To protect data privacy while still allowing model training on such servers, privacy-preserving machine learning using Fully Homomorphic Encryption (FHE) has gained significant attention. However, its widespread adoption is hindered by performance degradation. This paper presents our experiments on training models over encrypted data using FHE. The results show that while FHE ensures privacy, it can significantly degrade performance, requiring complex tuning to optimize.more » « lessFree, publicly-accessible full text available December 15, 2025
-
Parent, Audrey V.; Ashe, Sudipta; Nair, Gopika G.; Li, Mei-Lan; Chavez, Jessica; Liu, Jennifer S.; Zhong, Yongping; Streeter, Philip R.; Hebrok, Matthias (, Stem Cell Reports)
-
Cao, Yutao; Yuan, Yue; Shang, Yafen; Zverev, Vladimir I.; Gimaev, Radel R.; Barua, R.; Hadimani, R. L.; Mei, Lan; Guo, Gang; Fu, Hao (, Journal of Materials Science)null (Ed.)
An official website of the United States government
